1 F eb 1 99 9 A proof of a conjecture for the number of ramified coverings of the sphere by the torus ∗

نویسندگان

  • I. P. Goulden
  • D. M. Jackson
چکیده

A proof of a conjecture for the number of ramified coverings of the sphere by the torus * Abstract An explicit expression is obtained for the generating series for the number of ramified coverings of the sphere by the torus, with elementary branch points and prescribed ramification type over infinity. This proves a conjecture of Goulden, Jackson and Vainshtein for the explicit number of such coverings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of a Conjecture for the Number of Ramified Coverings of the Sphere by the Torus

Let X be a compact connected Riemann surface of genus g"0. A ramified covering of S of degree n by X is a non-constant meromorphic function f : X!S such that | f (q)|=n for all but a finite number of points q # S, which are called branch points. Two ramified coverings f1 and f2 of S by X are said to be equivalent if there is a homeomorphism ? : X!X such that f1= f2 b?. A ramified covering f is ...

متن کامل

The Number of Ramified Coverings of the Sphere by the Double Torus, and a General Form for Higher Genera

The number of ramified coverings of the sphere by the double torus, and a general form for higher genera * Abstract An explicit expression is obtained for the generating series for the number of ramified coverings of the sphere by the double torus, with elementary branch points and prescribed ramification type over infinity. Thus we are able to determine various linear recurrence equations for ...

متن کامل

On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture

The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...

متن کامل

Partial proof of Graham Higman's conjecture related to coset diagrams

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

متن کامل

Ramified Coverings of S2 with One Degenerate Branching Point and Enumeration of Edge-ordered Graphs

In this short note we extend the results of Lyashko, Looijenga, and Arnold on the number of nonequivalent rational functions on the sphere with 1 or 2 poles and simple nite branching points to several other cases. In particular, we calculate the number of meromorphic functions on the torus with the same properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998